Open Inventor Release 2023.2.3
 
Loading...
Searching...
No Matches
SoGrayscaleCorrelationProcessing2d Class Reference

ImageViz SoGrayscaleCorrelationProcessing2d engine More...

#include <ImageViz/Engines/GeometryAndMatching/PatternRecognition/SoGrayscaleCorrelationProcessing2d.h>

+ Inheritance diagram for SoGrayscaleCorrelationProcessing2d:

Classes

class  SbCorrelationDetail
 Results details of image correlation. More...
 

Public Types

enum  CorrelationCriterion {
  SIGNCHANGE = 0 ,
  SUBSTRACT = 1 ,
  MULTIPLY = 2
}
 See Correlation. More...
 
enum  OffsetMode {
  OFFSET_1 = 0 ,
  OFFSET_2 = 1 ,
  OFFSET_4 = 2 ,
  OFFSET_8 = 3
}
 This field is ignored in the multiply correlation mode. More...
 
enum  CorrelationMode {
  DIRECT = 0 ,
  MEAN = 1 ,
  VARIANCE = 2 ,
  MEAN_VARIANCE = 3
}
 See Correlation and for each SoGrayscaleCorrelationProcessing2d::CorrelationCriterion. More...
 
- Public Types inherited from SoImageVizEngine
enum  ComputeMode {
  MODE_2D = 0 ,
  MODE_3D = 1 ,
  MODE_AUTO = 2
}
 Compute Mode This enum specifies whether the main input will be interpreted as a 3D volume or a stack of 2D images for processing. More...
 
enum  Neighborhood3d {
  CONNECTIVITY_6 = 0 ,
  CONNECTIVITY_18 = 1 ,
  CONNECTIVITY_26 = 2
}
 Neighborhood Connectivity 3D. More...
 

Public Member Functions

 SoGrayscaleCorrelationProcessing2d ()
 Constructor.
 
- Public Member Functions inherited from SoImageVizEngine
virtual SoType getTypeId () const
 Returns the type identifier for this specific instance.
 
virtual void startEvaluate ()
 Evaluate engine and dependencies in another thread without blocking the current one.
 
virtual void waitEvaluate ()
 Wait for the end of engine evaluation.
 
virtual void abortEvaluate ()
 Abort current processing as soon as possible.
 
virtual bool isEvaluating ()
 Returns true if the engine evaluation is in progress.
 
- Public Member Functions inherited from SoEngine
virtual int getOutputs (SoEngineOutputList &list) const
 Returns a list of outputs in this engine.
 
SoEngineOutputgetOutput (const SbName &outputName) const
 Returns a reference to the engine output with the given name.
 
SbBool getOutputName (const SoEngineOutput *output, SbName &outputName) const
 Returns (in outputName) the name of the engine output (output).
 
SoEnginecopy () const
 Creates and returns an exact copy of the engine.
 
- Public Member Functions inherited from SoFieldContainer
void setToDefaults ()
 Sets all fields in this object to their default values.
 
SbBool hasDefaultValues () const
 Returns TRUE if all of the object's fields have their default values.
 
SbBool fieldsAreEqual (const SoFieldContainer *fc) const
 Returns TRUE if this object's fields are exactly equal to fc's fields.
 
void copyFieldValues (const SoFieldContainer *fc, SbBool copyConnections=FALSE)
 Copies the contents of fc's fields into this object's fields.
 
SoNONUNICODE SbBool set (const char *fieldDataString)
 Sets one or more fields in this object to the values specified in the given string, which should be a string in the Open Inventor file format.
 
SbBool set (const SbString &fieldDataString)
 Sets one or more fields in this object to the values specified in the given string, which should be a string in the Open Inventor file format.
 
void get (SbString &fieldDataString)
 Returns the values of the fields of this object in the Open Inventor ASCII file format in the given string.
 
virtual int getFields (SoFieldList &list) const
 Appends references to all of this object's fields to resultList, and returns the number of fields appended.
 
virtual int getAllFields (SoFieldList &list) const
 Returns a list of fields, including the eventIn's and eventOut's.
 
virtual SoFieldgetField (const SbName &fieldName) const
 Returns a the field of this object whose name is fieldName.
 
virtual SoFieldgetEventIn (const SbName &fieldName) const
 Returns a the eventIn with the given name.
 
virtual SoFieldgetEventOut (const SbName &fieldName) const
 Returns the eventOut with the given name.
 
SbBool getFieldName (const SoField *field, SbName &fieldName) const
 Returns the name of the given field in the fieldName argument.
 
SbBool enableNotify (SbBool flag)
 Notification at this Field Container is enabled (if flag == TRUE) or disabled (if flag == FALSE).
 
SbBool isNotifyEnabled () const
 Notification is the process of telling interested objects that this object has changed.
 
virtual void setUserData (void *data)
 Sets application data.
 
void * getUserData (void) const
 Gets user application data.
 
- Public Member Functions inherited from SoBase
virtual void touch ()
 Marks an instance as modified, simulating a change to it.
 
virtual SbName getName () const
 Returns the name of an instance.
 
virtual void setName (const SbName &name)
 Sets the name of an instance.
 
void setSynchronizable (const bool b)
 Sets this to be a ScaleViz synchronizable object.
 
bool isSynchronizable () const
 Gets the ScaleViz synchronizable state of this object.
 
- Public Member Functions inherited from SoRefCounter
void ref () const
 Adds a reference to an instance.
 
void unref () const
 Removes a reference from an instance.
 
void unrefNoDelete () const
 unrefNoDelete() should be called when it is desired to decrement the reference count, but not delete the instance if this brings the reference count to zero.
 
int getRefCount () const
 Returns current reference count.
 
void lock () const
 lock this instance.
 
void unlock () const
 unlock this instance.
 
- Public Member Functions inherited from SoTypedObject
SbBool isOfType (const SoType &type) const
 Returns TRUE if this object is of the type specified in type or is derived from that type.
 
template<typename TypedObjectClass >
SbBool isOfType () const
 Returns TRUE if this object is of the type of class TypedObjectClass or is derived from that class.
 

Public Attributes

SoSFEnum correlationCriterion
 Select the correlation operator.
 
SoSFImageDataAdapter inGrayImage
 The input grayscale image.
 
SoSFImageDataAdapter inKernelImage
 The correlation kernel.
 
SoSFEnum offsetMode
 Select the calculation offset (number of pixels).
 
SoSFEnum correlationMode
 Select the normalization mode for correlation.
 
SoImageVizEngineOutput< SoSFImageDataAdapter, SoImageDataAdapter * > outMatchingImage
 The output correlation image.
 
SoImageVizEngineAnalysisOutput< SbCorrelationDetailoutResult
 The correlation matching results.
 
- Public Attributes inherited from SoImageVizEngine
SbEventHandler< EventArg & > onBegin
 Event raised when the processing begins.
 
SbEventHandler< EventArg & > onEnd
 Event raised when processing ends and the result is available.
 
SbEventHandler< EventArg & > onProgress
 Event raised while processing is running.
 

Additional Inherited Members

- Static Public Member Functions inherited from SoImageVizEngine
static SoType getClassTypeId ()
 Returns the type identifier for this class.
 
- Static Public Member Functions inherited from SoEngine
static SoType getClassTypeId ()
 Returns the type identifier for the SoEngine class.
 
static SoEnginegetByName (const SbName &name)
 Looks up engine(s) by name.
 
static int getByName (const SbName &name, SoEngineList &list)
 Looks up engine(s) by name.
 
- Static Public Member Functions inherited from SoFieldContainer
static SoType getClassTypeId ()
 Returns the type of this class.
 
- Static Public Member Functions inherited from SoBase
static SoType getClassTypeId ()
 Returns type identifier for this class.
 
- Static Public Member Functions inherited from SoTypedObject
static SoType getClassTypeId ()
 Returns the type identifier for this class.
 

Detailed Description

ImageViz SoGrayscaleCorrelationProcessing2d engine

The SoGrayscaleCorrelationProcessing2d image filter performs a correlation between a grey level image I and a grey level kernel K returning the correlation image O.

See Correlation for generalities.

Notations:

\[Kmean=\frac{\sum\limits_{i=1}^{kx} \sum\limits_{j=1}^{ky} K(i,j)}{kx\times ky}\]

\[Imean(n,m)=\frac{\sum\limits_{i=1}^{kx} \sum\limits_{j=1}^{ky} I(n+i,m+j)}{kx\times ky}\]

\[Kvar=\sum_{i=1}^{kx} \sum_{j=1}^{ky} \left(K(i,j)-Kmean\right)^{2}\]

\[Ivar(n,m)=\sum_{i=1}^{kx} \sum_{j=1}^{ky} \left( I(n+i-\frac{kx}{2},m+j-\frac{ky}{2} ) - Imean(n,m)\right)^{2}\]

The different possibilities are presented below using a 1-D correlation between an image and kernel. In the image, the kernel appears 6 times with different contrast and luminosity.

Figure 1: 1D image and kernel

The 6 examples show the kernel appearing with different contrast and luminosity.

Figure 2: Example of 1D correlations

Multiply correlation

For DIRECT

    \[O(n,m)=\sum_{i=1}^{kx} \sum_{j=1}^{ky} K(i,j)\times I(n+i-\frac{kx}{2},m+j-\frac{ky}{2})\]

    In this mode, we have detected 3 of the 6 patterns matching the kernel. Only high luminosity patterns have been detected. The best matching is obtained for the high contrast and luminosity pattern.

    Figure 3: Example of Multiply 1D direct correlation

For MEAN

    \[O(n,m)=\sum_{i=1}^{kx} \sum_{j=1}^{ky} \left(K(i,j)-Kmean\right)\times \left(I(n+i-\frac{kx}{2},m+j-\frac{ky}{2})-Imean(n,m)\right)\]

    In this mode, we have detected 2 of the 6 patterns matching the kernel. Only high contrast patterns have been detected. The confidence rate is the same for the two 2 patterns.

    Figure 4: Example of Multiply 1D mean correlation

For VARIANCE

    \[O(n,m)=\frac{\sum\limits_{i=1}^{kx} \sum\limits_{j=1}^{ky} K(i,j)\times I(n+i-\frac{kx}{2},m+j-\frac{ky}{2})}{\sqrt{Kvar\times Ivar(n,m)}}\]

    In this mode, we have detected the 2 patterns matching the kernel with the same confidence rate.

    Figure 5: Example of Multiply 1D variance correlation

For MEAN_VARIANCE

    \[O(n,m)=\frac{\sum\limits_{i=1}^{kx} \sum\limits_{j=1}^{ky} \left(K(i,j)-Kmean\right)\times \left(I(n+i-\frac{kx}{2},m+j-\frac{ky}{2})-Imean(n,m)\right)}{\sqrt{Kvar\times Ivar(n,m)}}\]

    In this mode, we have detected the 6 patterns matching the kernel with the same confidence rate.

    Figure 6: Example of Multiply 1D mean and variance correlation

Difference correlation

For DIRECT

    \[O(n,m)=\sum_{i=1}^{kx} \sum_{j=1}^{ky} \left|K(i,j)-I(n+i-\frac{kx}{2},m+j-\frac{ky}{2})\right|\]

    In this mode, we have detected 3 of the 6 patterns matching the kernel. Only similar luminosity patterns have been detected. The best matching is obtained with the similar contrast and luminosity pattern.

    Figure 7: Example of Difference 1D direct correlation

For MEAN

    \[O(n,m)=\sum_{i=1}^{kx} \sum_{j=1}^{ky} \left|\left(K(i,j)-Kmean\right)-\left(I(n+i-\frac{kx}{2},m+j-\frac{ky}{2})-Imean(n,m)\right)\right|\]

    In this mode, we have detected 2 of the 6 patterns matching the kernel. Only similar contrast patterns have been detected. The confidence rate is the same for the 2 patterns.

    Figure 8: Example of Difference 1D mean correlation

For VARIANCE

    \[O(n,m)=\frac{\sum\limits_{i=1}^{kx} \sum\limits_{j=1}^{ky} \left|K(i,j)-I(n+i-\frac{kx}{2},m+j-\frac{ky}{2})\right|}{\sqrt{Kvar\times Ivar(n,m)}}\]

    In this mode, we have detected 3 of the 6 patterns matching the kernel. Only similar luminosity patterns have been detected. The confidence rate is the same for the 3 patterns.

    Figure 9: Example of Difference 1D variance correlation

For MEAN_VARIANCE

    \[O(n,m)=\frac{\sum\limits_{i=1}^{kx} \sum\limits_{j=1}^{ky} \left|\left(K(i,j)-Kmean\right)-\left(I(n+i-\frac{kx}{2},m+j-\frac{ky}{2})-Imean(n,m)\right)\right|}{\sqrt{Kvar\times Ivar(n,m)}}\]

    In this mode, we have detected the 6 patterns matching the kernel with the same confidence rate.

    Figure 10: Example of Difference 1D mean and variance correlation

Sign Change correlation

    The correlation is performed depending on SoGrayscaleCorrelationProcessing2d::CorrelationMode.

    $S$ is the sign change criterion performed on the difference image. It corresponds to the number of sign changes calculated on every line.

    Figure 11: Example of sign correlation

    The object in the model and the object in the image have luminosity, contrast and noise differences. After normalization depending on the correlation type, the sign change criterion is applied on the difference image. The noise is supposed to be additive and zero mean. The statistical density function of the noise is supposed to be symmetrical. The best matching will correspond to the maximum number of sign changes.

    This correlation gives very good results with big kernels. It was created for medical applications where images are often very noisy.

For DIRECT

    \[O(n,m)=\sum_{i=1}^{kx} \sum_{j=1}^{ky} S\left[K(i,j)-I(n+i-\frac{kx}{2},m+j-\frac{ky}{2})\right]\]

For MEAN

    \[O(n,m)=\sum_{i=1}^{kx} \sum_{j=1}^{ky} S\left[\left(K(i,j)-Kmean\right)-\left(I(n+i-\frac{kx}{2},m+j-\frac{ky}{2})-Imean(n,m)\right)\right]\]

For VARIANCE

    \[O(n,m)=\frac{\sum\limits_{i=1}^{kx} \sum\limits_{j=1}^{ky} S\left[K(i,j)-I(n+i-\frac{kx}{2},m+j-\frac{ky}{2})\right]}{\sqrt{Kvar\times Ivar(n,m)}}\]

For MEAN_VARIANCE

    \[O(n,m)=\frac{\sum\limits_{i=1}^{kx} \sum\limits_{j=1}^{ky} S\left[\left(K(i,j)-Kmean\right)-\left(I(n+i-\frac{kx}{2},m+j-\frac{ky}{2})-Imean(n,m)\right)\right]}{\sqrt{Kvar\times Ivar(n,m)}}\]

FILE FORMAT/DEFAULT

    GrayscaleCorrelationProcessing2d {
    correlationCriterion MULTIPLY
    inGrayImage NULL
    inKernelImage NULL
    offsetMode OFFSET_1
    correlationMode DIRECT
    }


Library references: dcorrel mcorrel scorrel

Definition at line 163 of file SoGrayscaleCorrelationProcessing2d.h.

Member Enumeration Documentation

◆ CorrelationCriterion

◆ CorrelationMode

See Correlation and for each SoGrayscaleCorrelationProcessing2d::CorrelationCriterion.

Enumerator
DIRECT 

Direct correlation (no normalization).

MEAN 

Mean normalized correlation (luminosity).

VARIANCE 

Variance normalized correlation (contrast).

MEAN_VARIANCE 

Mean and variance normalized correlation (luminosity and contrast).

Definition at line 278 of file SoGrayscaleCorrelationProcessing2d.h.

◆ OffsetMode

This field is ignored in the multiply correlation mode.

See Correlation

Enumerator
OFFSET_1 

step of 1

OFFSET_2 

step of 2

OFFSET_4 

step of 4

OFFSET_8 

Definition at line 250 of file SoGrayscaleCorrelationProcessing2d.h.

Constructor & Destructor Documentation

◆ SoGrayscaleCorrelationProcessing2d()

SoGrayscaleCorrelationProcessing2d::SoGrayscaleCorrelationProcessing2d ( )

Constructor.

Member Data Documentation

◆ correlationCriterion

SoSFEnum SoGrayscaleCorrelationProcessing2d::correlationCriterion

Select the correlation operator.

Use enum CorrelationCriterion. Default is MULTIPLY

Definition at line 238 of file SoGrayscaleCorrelationProcessing2d.h.

◆ correlationMode

SoSFEnum SoGrayscaleCorrelationProcessing2d::correlationMode

Select the normalization mode for correlation.

Use enum CorrelationMode. Default is DIRECT

Definition at line 300 of file SoGrayscaleCorrelationProcessing2d.h.

◆ inGrayImage

SoSFImageDataAdapter SoGrayscaleCorrelationProcessing2d::inGrayImage

The input grayscale image.

Default value is NULL. Supported types include: grayscale binary label image.

Definition at line 241 of file SoGrayscaleCorrelationProcessing2d.h.

◆ inKernelImage

SoSFImageDataAdapter SoGrayscaleCorrelationProcessing2d::inKernelImage

The correlation kernel.

Default value is NULL. Supported types include: grayscale binary label image.

Definition at line 244 of file SoGrayscaleCorrelationProcessing2d.h.

◆ offsetMode

SoSFEnum SoGrayscaleCorrelationProcessing2d::offsetMode

Select the calculation offset (number of pixels).

Use enum OffsetMode. Default is OFFSET_1

Definition at line 272 of file SoGrayscaleCorrelationProcessing2d.h.

◆ outMatchingImage

SoImageVizEngineOutput<SoSFImageDataAdapter,SoImageDataAdapter*> SoGrayscaleCorrelationProcessing2d::outMatchingImage

The output correlation image.

Default value is NULL. Supported types include: grayscale color image.

Definition at line 303 of file SoGrayscaleCorrelationProcessing2d.h.

◆ outResult

SoImageVizEngineAnalysisOutput<SbCorrelationDetail> SoGrayscaleCorrelationProcessing2d::outResult

The correlation matching results.

Default value is NULL.

Definition at line 306 of file SoGrayscaleCorrelationProcessing2d.h.


The documentation for this class was generated from the following file: